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Al-EDGE goes Global /\ | EDGE
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AI-EDGE Institute International Collaborations

Overview of key international collaborative scientific activities and use cases with the Al-EDGE Institute
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Al-EDGE’s Current Research Thrusts New Proposed Tasks through International Collaboration
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LLMs Take the World by Storm /Nl
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How Microsoft’s bet on Azure unlocked an
Al revolution

About five years ago, artificial intelligence research organization OpenAl pitched Microsoft
on a bold idea that it could build Al systems that would forever change how people interact

Kevin Liu (Ohio State)
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Big Tech’s Spending Frenzy on Al Infra AN i
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EDGE
A Compelling Need for Democratizing LLMs Qi

* Growing concerns about domination of big tech giants in training LLMs
— Non-transparency of state-of-the-art LLM technologies
— Security and trustworthiness due to closed training processes
— Environmental sustainability risks of centralized huge computing centers

4 )

Question: Can we open LLM training in a distributed network environment?
(i.e., enabling LLM training to “anywhere and everywhere?”)

Kevin Liu (Ohio State)
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Democratize LLM Training with the Edge! AN e

LLM Training = Pretraining + Finetuning

Vision: A unified learning framework over broadly

N 'f...
‘: defined edge networks for both LLM training phases
"

Key ldea:

* Leverage lower-end but abundant, under-utilized, and
spare GPUs across multiple institutions to perform both
LLM pretraining and finetuning in a distributed fashion

Kevin Liu (Ohio State) AraFest 2025, lowa State University
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Challenges of Democratize LLMs with the Edge! oM i

* Lots of Networking Challenges to overcome:
— Pretraining:
« Handling large network delays

« Transmitting a large amount of data over
limited bandwidth

« Handling servers and workers heterogeneity
* Packet losses

— Finetuning:

 |n addition to similar challenges as in pretraining, we also need to manage
interference, noise, and wireless resources if finetuning at the wireless edge

Kevin Liu (Ohio State)
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Proof of Concept 1: Distributed LLM Pretraining
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Started a Cross-Institution Pretraining System in Year 3
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Cross-Institution Pretraining System VAN frees

AWS EC2
SEC AWS EC2
d=) (=
= =

'‘SRPC

(" master GPU

T I =

OSU Cluster UW-Madison Cluster 2 UW-Madison Cluster 1 — g
H100 X 4 A100 X 8 3090 X 4 o =« SRS

— — —_ LLM is trained with
= = = Fully Sharded Data Parallel (FSDP)

Cross-Institution Pre-Training System Architecture Within Each Cluster
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Cross-Institution Pretraining System: The Algorithm ZN\ |l i

Model initialized
on Client 1

Client 1 Client 2

Distributing

@ initialized param.
= to other clients
==
==
Parameter
Server on AWS Synchronizing param.
every 10 minutes
Failed ) ¢
(Preempted) b ®
Client ®

Relaunch the
client
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Idea 1: Hierarchical Synchronization VAN Fers

. PyTorch
C(:ETB AWS Cluster VPC Peering /Aws Cluster {\BO Dlstrlbutedm
E=. Nhin.1 — Nhin. 2

PS1 Ring PS 3
wsc  AllReduce , 0

110 STATE
NIVERSITY

Benefits
Our VPC based network design among regions enables us to:

1. Leverage the AWS backbone network for efficient cross-
region communication.

2. Ensure communication remains within the private
network, improving data privacy and security.

Periodic PyTorch Rlng AllReduce
between PSs

communication
orkers and PSs

OSU Cluster UW-Madison Cluster UT-Austin Cluster
H100 x 2 A100 X 2 H100 X 4

Organize workers into groups through virtual private cloud (VPC) with near-by parameter servers (PSs) for fast intra-
group sync, and let PSs to aggregate across groups on a slower cadence.
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Idea 2: Two-Level Data Compression QYT

- Motivation

— Reduce payload sent across the network.

Client |

Compression *)I(*'

Payload

to be sent

A

A 4

Quantization

Encoding

Server —’3

Reconstruction,, ”

Payload

received

A

Dequantization [« Decoding

- A Two-Level Data Compression System

Reconstruction
Compressed
Payload
dy’oa » Decoding —* Dequantization [—> Payl_oa G
received
Compression+)|(+
Compressed
Payload Encoding & Quantization < GEAC
to be sent

1) Data quantization with lower precision floating point representations
2) Coding compression based on quantized levels (transmit only codebook index)

Kevin Liu (Ohio State)
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Huffman-Based Gradient Compression AN e

Worker | David A. Huffman (1925-1999) Parameter Server

. BS, MS, The Ohio State University
: N DSc, Massachusetts Institute of Technology =)
L} _- L} -_ -_ ____________ 9 E

Decompression at Server

Reconstructed Payload

A
2

1D Tensor Reconstructed Flattened Tensors Reconstructed Quantized Vector

2D Tensor

A

Huffman Decoding Payload Received

1D Tensor
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Video Demo of Distributed LLM Pretraining
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Pretraining Video Demo
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Proof of Concept 2: Distributed LLM Finetuning
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EDGE
A Colosseum-Based Finetuning System AN i

Custom
DataSet

0
10

LCOnn NN
COLOSSEUM

at Northeastern University

Kevin Liu (Ohio State) 27




Colosseum-Based Finetuning Design: Iteration 1 AN s

Colosseum SRN Cluster Benefits:

* Wireless communication enabled
via SRNs.

((( ))) Linux Container  Utilizes PyTorch RPC for efficient
i communication.

Client SRN 1

()
Client SRN 2 ]———i

Obstacles:
* SRN nodes have low-end and GPU
software support is unsuitable for

\&
A

LLM training.
° . PyTorch * Dedicated DGX GPU clusteris only
° RPC ((( ))) connected to SRNs via wired
connections.
® Server SRN O ] * Firewalls between the GPU and

SRN clusters block the use of
PyTorch RPC.

Kevin Liu (Ohio State) AraFest 2025, lowa State University




Colosseum-Based Finetuning Design: Iteration 2 AN i

Colosseum GPU Cluster * Colosseum SRN Cluster ‘
s N
‘\‘“&3 /9""

docker /

((( ))) Linux Con
&3S 2100 Client 1 W[Router SRN 1]——j

‘GRPC ()
: A100  Client 2 Router SRN 2

N

Z

4 ) GRPC ()

Note: Rather than a “work-around” for Colosseum, this architecture implies:

« An even more flexible way to “crowd-source” GPU resources for “secure Server SRN O ]
and private” LLM finetuning

* A unified learning framework with the pretraining system!!

Kevin Liu (Ohio State)
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An International Cross-Institution A\ | EbEE
Finetuning System

‘ Custom
DataSet
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N
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Hybrid LoRA in the Wild AN o
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Limitation of FedAvg-Type Methods AN i

LLM model size could easily exceed the storage capacity of edge devices:
 Contains encoder, decoder, and a cascade of a series of self-attention blocks
* Model size is typically several GBs

Typical Client

M

!
Japodag
J
5507
SSO7

Attention Block
Attention Block
Attention Block

Attention Block

Kevin Liu (Ohio State)
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Institute

Solution: Federated Split Learning

ONONG,

}
Encoder
}
Attention Block
)
Attention Block
)
Attention Block
Attention Block
!
19p023(
!
SSO7
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Solution: Federated Split Learning

Client-side model Server-side model
4 X -z Y4
(® ) (@) (@) (@)
o o o o
O e e ) va) =
o c c c c o 5
— o —> o o > o) O OO o —> o —> 3
c = = = = o *
w c c c c D
Q Q Q Q -
£ £ £ £
< b7 < <

Learns a model jointly by splitting it into two pieces:
* Smaller client-side model trained by clients
* Larger server-side model trained by server

AraFest 2025, lowa State University
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Video Demo of Distributed LLM Finetuning
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Finetuning Video Demo
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Summary /N e

* Goal: Democratize LLMs with the Edge

* What We Have Achieved This Year:
— A cross-institution LLM pretraining system between OSU and Wisconsin
— A Colosseum-based LLM finetuning system
— Sharing a unified learning framework

* Proofs of Concepts and Impacts:
— Cross-institution pretraining over the edge that overcomes networking challenges
— Wireless edge-based finetuning with advanced comm.-efficient finetuning methods
— Both pretraining and finetuning over the edge achieve competitive performances

[ Takeaway: Al-EDGE’s innovations 2 The 1st “Anywhere & Everywhere” LLM Training @ Edge ]

AraFest 2025, lowa State University




Roadmap

Cross-Institution
LLM Pretraining

Year 3

Theoretical and

algorithmic foundation
of mixed parallelisms
for LLM pretraining

(i) Joint learning and
scheduling with FSDP
(ii) Async FL-based cross-
institutional pretraining

Pretraining for larger

LLM:; Increase the # of

institutions;
Compression; Mixed
parallelism.

EDGE

Institute

Test and verify all
communication-efficient
methods developed by
AI-EDGE researchers

Cross-Institution
LLMs Finetuning

Communication-
efficient federated

learning algorithmic
foundation

FL-based finetuning on
Colosseum (i) Basic
LoRA; (ii) Hybrid LORA;
(iii) Zeroth-order
method

(i) More complex LLM
finetuning tasks (e.g.,
RLHF alignment); (ii)
System heterogeneity

(i) Security & privacy;
(i) anarchic FL for
finetuning; (iii) Over-
the-air FL for finetuning;

Milestone Proof-of-
Concept

Kevin Liu (Ohio State)

Proofs-of-Concepts:

(1) Federated cross-
institution LLM pre-
training

(2) FL-based LLM
finetuning on
Colosseum

AraFest 2025, lowa State University

Train-test-improve
both LLM pretraining
and finetuning

Demo of larger-scale
LLM pretraining

Demo of larger-scale
LLM finetuning

Train-test-improve both

LLM pretraining and
finetuning

Demo of mixed
parallelisms in LLM
pretraining

Defense against
security & privacy
attacks in LLM
finetuning
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